
Obsah
Poděkování . 1
1 Předmluva ke druhému vydání . 7
2 Úvodní informace. 8

2.1 Ochranné známky. 8
2.2 Vyloučení odpovědnosti . 8
2.3 Licence ukázkových příkladů . 9
2.4 Typografie . 9
2.5 Různé . 9

3 Úvod a motivace . 10
3.1 Proč vznikla tato kniha? . 10
3.2 Co budeme potřebovat?. 11
3.3 Proč se učit programovat? . 11
3.4 Proč se učit právě jazyk Java? . 12
3.5 Proč webové aplikace?. 13
3.6 Pár slov o jazyku Java . 13

4 Základní pojmy . 15
4.1 Data . 15
4.2 Algoritmus . 15
4.3 Paměť . 18

4.3.1 Ukládání čísel . 18
4.3.2 Ukládání znaků . 19
4.3.3 Ukládání logických hodnot . 19
4.3.4 Jak počítač rozumí informacím v paměti . 19

4.4 Proměnná . 20
4.5 Primitivní datové typy a přetypování . 20
4.6 Java výrazy a příkazy. 22
4.7 Stromová struktura dat . 24
4.8 Model reálného světa. 25
4.9 Fyzikální objekt . 25
4.10 Programový objekt . 26
4.11 Třída objektů . 26

4.11.1 Diagram modelu tříd . 27
4.11.2 Název třídy . 28
4.11.3 Atributy . 28
4.11.4 Metody . 28

2

4.11.5 Konstruktor. 29
4.11.6 Třída ve zdrojovém kódu . 29

5 Od třídy k reálnému kódu . 31
5.1 Užití objektu . 31

5.1.1 Texty v jazyce Java . 31
5.1.2 Vytvoření instance a užití třídy . 31
5.1.3 Autoboxing . 33
5.1.4 Neplatné objekty null . 34
5.1.5 Vztahy mezi třídami . 35

5.2 Další poznámky ke třídám . 38
5.2.1 Viditelnost metod, atributů a tříd . 38
5.2.2 Dědičnost . 39
5.2.3 Výjimky . 42
5.2.4 Balíčky . 45
5.2.5 Komentáře kódu a JavaDoc. 46
5.2.6 Interface. 48
5.2.7 Generické datové typy . 49
5.2.8 Inline třídy a lambda výrazy . 50
5.2.9 Třída typu Record . 51
5.2.10 Knihovny . 52

5.3 Datový typ pole . 52
5.3.1 Pole vytvořené metodou třídy . 53

5.4 Vybrané třídy standardní knihovny. 54
5.4.1 Třída String . 54
5.4.2 Rozhraní List. 55

Třída ArrayList . 56
List s typem prvku . 57

5.4.3 Rozhraní Map . 57
5.4.4 Rozhraní Stream . 58
5.4.5 Třída BigDecimal . 59
5.4.6 Shrnutí kapitoly o třídách . 61

6 Webové technologie a pojmy. 62
6.1 XML – rozšiřitelný značkovací jazyk . 63
6.2 HTML – hypertextový značkovací jazyk . 65
6.3 CSS – Kaskádové styly . 66
6.4 URL – Adresa internetové stránky . 69
6.5 JSON – úsporný datový formát. 70

3

6.6 Shrnutí . 71
7 Řešené příklady. 72

7.1 Instalace . 73
7.1.1 Hardware a operační systém . 73
7.1.2 Apache Maven . 74
7.1.3 Znakový terminál . 75
7.1.4 Získání příkladů. 75
7.1.5 Instalace vývojového prostředí . 75
7.1.6 Spouštění příkladů . 76
7.1.7 Co dělat při potížích? . 76
7.1.8 Virtuální počítač . 77
7.1.9 Virtualizační kontejner . 78
7.1.10 Vývojové editory . 79

7.2 Servlety . 79
7.2.1 Hello, World!. 80

První servlet. 81
Výsledek servletu . 84

7.2.2 Datový model HTML stránky . 84
Připojení knihovny do projektu . 87

7.2.3 Programové výrazy. 88
7.3 Tvorba tabulek. 90

7.3.1 Jednoduchá tabulka . 90
Příkaz for . 91
Inkrementace a dekrementace . 92
Řešení úkolu. 93
Alternativní procházení pole. 94
Podmíněný příkaz if-else . 95
Tabulka náhodných čísel . 95

7.3.2 Přehled vozidel . 97
7.4 Formuláře . 99

7.4.1 Formulář s jedním vstupním elementem . 99
7.4.2 Formulář s více vstupními elementy . 101

Regulární výrazy. 102
Formulář osobních údajů . 103
Ternární operátor. 106
Hodnocení platnosti textů . 107

7.4.3 Počítání slov . 108

4

7.5 Zábava . 110
7.5.1 Vlastní rodič servletu . 110
7.5.2 Bodové kreslení . 111

Pomocná třída Base64Converter . 113
Parsování textu . 113
Class – třída pro popis tříd . 114
Logování událostí . 114
Třída Optional . 115

7.5.3 Binární podoba textu . 115
Řešení . 116

7.5.4 Piškvorky s defenzivní strategií hry . 118
Diagram tříd. 119
Jak to funguje?. 119
Enumerátor . 121
Příkaz switch . 123
Popis tříd diagramu a jejich metod . 124
Zpracování dotazu . 125

7.6 Interaktivní aplikace s AJAX . 126
7.6.1 Co je to AJAX . 127
7.6.2 Testování regulárních výrazů . 128
7.6.3 Piškvorky s rychlejší odezvou . 131

7.7 Herní strategie od umělé inteligence . 134
7.7.1 Jak formulovat požadavek na herní strategii pro AI 134
7.7.2 Závěrečné kroky a autorská práva . 135
7.7.3 Automatizované testy. 135

7.8 Verzování zdrojového kódu . 136
8 Úvod do databází a práce s daty . 139

8.1 Základní pojmy relačních databází . 139
8.2 Relace a entity . 140
8.3 Jazyk SQL aneb jak mluvit s databází . 141

8.3.1 Tvorba databázové tabulky . 141
8.3.2 Vložení řádku . 142
8.3.3 Čtení řádku . 143
8.3.4 Změna záznamu . 144
8.3.5 Mazání řádku . 144
8.3.6 Databázové transakce . 145

8.4 Programové rozhraní Javy . 145

5

8.4.1 Základní rozhraní JDBC . 145
8.4.2 Pokročilé rozhraní JPA . 146
8.4.3 Jak usnadnit práci s JDBC . 147

8.5 Hledání hotelů v jazyce Java . 147
8.6 Diagram tříd. 148
8.7 Životní cyklus databázového spojení. 149
8.8 Čtení databáze v Java objektech . 151
8.9 Vkládání Java objektů do databáze . 153
8.10 Generická abstraktní třída . 154

9 Jak psát dobrý kód . 156
Reference a zdroje pro další studium. 158
Rejstřík slov. 161

6

Kód Výsl. Typ Poznámka
14. 2 + 3 == 6 - 1 true boolean Porovnání výsledků dvou operací. Matematické

operátory mají přednost před porovnáním.
15. 2 + 3 <= 6 - 2 false boolean Porovnání dvou číselných výrazů.
16. true || false true boolean Logický součet se vyznačuje párem svislých znaků

(anglicky pipe).
17. true && false false boolean Logický součin se vyznačuje párem znaků

ampersand (anglicky ampersand).
18. ! false true boolean Negace logického výrazu.

Znak podtržítka v číselném literálu se používá pro grafické oddělení, jeho použití
není povinné. Velikost hodnot primitivních typů lze porovnávat pomocí operátorů:
< (je menší než), > (je větší než), <= (menší či rovno), >= (větší či rovno), == (rovná se),
!= (nerovná se). Výsledkem porovnání je logická hodnota typu boolean. Zde jsou
uvedeny jen vybrané operátory. Vlastní preference lze vynutit kulatými závorkami.
Primitivní typy jsou výhodné pro svou nízkou paměťovou náročnost a přímou
podporu operátorů. Další příklady najdete v kapitole Programové výrazy.

4.7 Stromová struktura dat
Data lze seskupovat do struktur, které zrychlují vyhledávání nebo usnadňují
manipulaci. Se stromovou strukturou se budeme setkávat často, proto si
představíme základní pojmy.

Obrázek 5. Schéma stromu

24

Pro lepší představu o tomto datovém modelu si vezměme na pomoc strom jabloně
s jejími listy a plody. Místo, kde se větve dělí, se nazývá uzel (anglicky node). Tento
pojem obecně označuje jakékoliv místo, ke kterému se připojují další potomci. Na
obrázku jabloně to jsou další větve, plody či listy stromu.

Koncový uzel, který již nemá žádné potomky, se nazývá list (anglicky leaf). Každý
uzel má právě jednoho rodiče, s výjimkou prvního uzlu, kterému říkáme kořen
(anglicky root). Uzlům i listům můžeme přiřadit názvy. Spojnice mezi dvěma uzly se
nazývá hrana. Přesnou adresu uzlu zapíšeme jako postupný seznam názvů od
kořene, například oddělený tečkou.

a.e.f.h.žlutý_list

Podobně bychom mohli lokalizovat i červené jablko vpravo nahoře.

a.e.i.k.m.jablko

Stromovou strukturu má také adresa na poštovní obálce (stát → město → ulice).
Jiným příkladem může být hierarchická klasifikace organismů, dalších příkladů by
se našlo určitě více.

4.8 Model reálného světa
Vysvětlení pojmu model uvedeme krátkou definicí:

Model je zjednodušená reprezentace určitého objektu reálného světa či
systému – pojatá z určitého úhlu pohledu.

— inspirováno zdrojem [10]

Děti si hrají s modely autíček nebo s panenkami, což jsou v napodobeniny předmětů
reálného světa. Často se zachovává tvar či barva, zatímco jiné vlastnosti jsou
potlačeny kvůli bezpečnosti nebo ceně. Pokud se model skládá z informací pro
počítačové zpracování, říkáme mu datový model.

4.9 Fyzikální objekt
Při programování si objekt můžeme představit jako digitální model tělesa, který
napodobuje jeho vlastnosti i chování. Slovem těleso se označuje hmotný předmět,
který má své místo (či adresu), velikost v prostoru a také čas vzniku i zániku.
Za těleso lze považovat libovolný konkrétní předmět (např. dům nebo veverku),

25

Car

serialNumber : int
licensePlate : String
made: LocalDate

Company

name : String
country : Locale

User

personalNumber : int
firstname : String
surname : String
birthDate : LocalDate
email : String

VehicleModel

name : String
trunkVolume : int

EngineType

productCode : String
fuelName : String
power : Integer

owner

1*model

manufacturer

engine

Obrázek 7. Diagram tříd

Podle diagramu připravíme nové třídy a upravíme také tu původní metodu pro
vytvoření objektu jednoho auta. Podívejme se na výsledek…

Zdrojový kód 10. Komplexní sestavení objektu

public Car createCar() {

 Car car = new Car();
 car.setMade(LocalDate.of(2010, 10, 22)); ❶

 VehicleModel model = new VehicleModel();
 model.setManufacturer(new Company("Toyota", Locale.JAPAN)); ❷
 model.setName("Yaris");
 model.setTrunkVolume(436);
 car.setModel(model); ❸

 User user = new User();
 user.setPersonalNumber(10);
 user.setFirstname("Donald");
 user.setSurname("Choresisdi");
 user.setBirthDate(LocalDate.of(1990, Month.OCTOBER, 30)); ❹
 car.setOwner(user); ❺

 return car;
}

❶ Vytvoření objektu pro datum.

❷ Konstruktor se dvěma parametry. Atribut JAPAN je statický. Objekt lze vytvořit
a rovnou předat jako parametr bez ukládání do proměnné.

❸ Propojíme model s autem.

❹ Datum lze vytvořit i pomocí konstanty reprezentující měsíc.

❺ Propojíme uživatele s autem jako vlastníka.

36

Zdrojový kód 11. Řetězení metod

 public void printCar() {
 Car car = this.createCar(); ❶

 LocalDate made = car.getMade(); ❷
 String manufacturer = car.getModel().getManufacturer().getName(); ❸
 String modelName = car.getModel().getName(); ❹
 Integer trunkVolume = car.getTrunkVolume();
 String firstname = car.getOwner().getFirstname();
 String surname = car.getOwner().getSurname();
 String owner = firstname + " " + surname; ❺

 MyPrinter.print(made, manufacturer,
 modelName, trunkVolume, firstname, surname, owner); ❻
 return; ❼
}

❶ Zavoláme metodu pro vytvoření auta. this znamená, že voláme metodu na
stejném objektu, kde se zrovna nacházíme. Slovo this lze v při volání metod
zpravidla vynechat.

❷ Načtení data výroby do proměnné made.

❸ Ukázka řetězení metod: postupně se „prokoušeme“ až k názvu výrobce.
car.getModel() nám dá model, na něm zavoláme getManufacturer() a nakonec
getName(). Chybný název metody odhalí kompilátor nebo chytrý editor.

❹ Další ukázka řetězení.

❺ Spojení tří textů do jednoho (celé jméno).

❻ Předání dat k tisku.

❼ Příkaz return ukončí metodu. Na konci metody s návratovým typem void se ten
příkaz psát nemusí.

Všimněte si, že v diagramu přibyla nová třída popisující typ energie automobilu
(například benzin, nafta, elektřina z baterie). Může nás také zajímat, jak se zachová
volání metody getName() v případě, že metoda getManufacturer() neposkytuje žádný
přiřazený objekt. Volání metod na neexistujícím objektu vyvolá chybu při běhu
programu, která předčasně ukončí provádění metody. Jak už jsme zmínili dříve,
hodnota prázdných objektů se v kódu popisuje klíčovým slovem null, a takové
prázdné objekty jsou výchozí (anglicky default) hodnotou každého objektového
atributu či pole. Přesněji bychom mohli říci, že tento případ vede k vyhození
výjimky. Více informací o výjimkách (anglicky exceptions) se dozvíme v kapitole
Výjimky. Hodnotu null lze také zapisovat do proměnných, posílat do metody, či
použít při porovnání instancí. Přikládám několik příkladů použití.

37

❶ Nejdříve si připravíme číslo, jehož bitová hodnota bude o jedničku větší než
maximální hodnota čísla čtyřbitového rozsahu.

❷ Operátor | (česky svislík, kolmítko, roura, anglicky pipe) provádí bitový součet
dvou čísel, což znamená, že do výsledku promítne logický součet bitů na stejné
pozici. Je pravda, že náš výsledek bude o jeden znak delší, ale správnou hodnotu
získáme snadno metodou substring(). Pro úplnost uveďme také doplňkový
operátor & pro bitový součin, který provádí logický součin bitů.

Závěrem proveďme ve zdrojovém kódu vlastní změny: rozsah znakové sady
rozšiřme o jeden bit tak, aby sada pojala dvojnásobný počet znaků. Dále připravme
model na vkládání znakové sady konstruktorem, přičemž do konstruktoru vložíme
kontrolu velikosti znakové sady, která bude vyhazovat výjimku typu
IllegalArgumentException.

7.5.4 Piškvorky s defenzivní strategií hry

Hra Piškvorky patří mezi strategické hry, jejichž kořeny sahají hluboko do historie.
Existuje několik variant, mezi nejznámější patří zřejmě hra Gomoku s alternativním
názvem 5 in row (v překladu 5 v řadě). Naše pravidla hry budou následující: hráči
kladou střídavě barevné kameny do mřížky s konečnou velikostí, každý hráč má
svoji barvu. Vítězem se stává hráč, který jako první postaví nepřerušenou řadu
alespoň pěti kamenů své barvy, povolena je i řada šikmá. Hru je možné kdykoli
resetovat tlačítkem a zahájit hru novou. V naší implementaci bude protihráčem
vždy počítač a výhodu prvního tahu dostane vždy člověk.

Obrázek 36. Náhled hrací desky

Strategie SW protihráče bude pouze jednoduchá obrana. Cílem hry totiž není
vytvořit neporazitelný algoritmus, ale především ukázat řešení vhodné pro další
studium a později třeba i pro implementaci vlastních nápadů. Čtenáři mohou nad
rámec této knihy vyhledat některou knihovnu zaměřenou na hry typu Gomoku
a zkusit napojit její algoritmy do stávající architektury.

118

Teď už je snad jasnější, že zavedení výčtových typů přispělo ke stručnějšímu zápisu
kódu docela významně. Tím však výhody enumerátorů nekončí, lze je používat
efektivně také v příkazech switch.

Příkaz switch

Příkaz switch umožňuje větvit program podle primitivních celočíselných hodnot
(literálů či konstant). Z objektů jsou podporovány ještě typy String a Enum. Přikládám
zkrácenou ukázku použití ze třídy BoardModel.

Zdrojový kód 76. Ukázka použití příkazu switch

/** Set a stone by an index */
public void setStone(BoardPoint point, StoneEnum stone) {
 switch (stone) { ❶
 case BLACK_STONE: ❷
 case WHITE_STONE:
 fields.set(convertToBitSetIndex(point, stone)); ❸
 lastMove.set(point);
 break; ❹
 default: ❺
 throw new IllegalArgumentException("Illegal stone" + stone);
 }
}

❶ Příkaz switch vyhodnocuje proměnnou, která musí být různá od null. Tělo
příkazu je ohraničené složenými závorkami.

❷ Jednotlivé případy se zachytávají pomocí klíčového slova case s konstantou
zakončenou dvojtečkou. Výčtový typ je jednoznačně určen v hlavičce příkazu
a při zachytávání případů se už neuvádí.

❸ Následuje blok příkazů, které se provádějí až do nalezení klíčového slova break.
Zpracování je shodné pro bílý i tmavý kámen. Uložíme pozici kamene do objektu
typu BitSet, metoda convertToBitSetIndex() však nejprve spočítá hodnotu
potřebného indexu. Pozici posledního položeného kamene si pak uložíme pro
pozdější grafické zvýraznění.

❹ Příkaz pro ukončení bloku příkazů. V případě jeho absence by zpracování
pokračovalo průchodem následujících případů v příkazu switch.

❺ Hodnoty, které nejsou zachyceny žádným případem case, lze zachytit (volitelně)
klíčovým slovem default, přičemž tento blok nemusí být nutně na poslední
pozici. Zde se vyhazuje výjimka, protože zadanému bodu má smysl přiřadit
kámen pouze bílé nebo černé barvy.

123

constraint). Pro rychlé vyhledávání může mít jeden či více sloupců definovaný
index, což je pomocná datová struktura, kterou si databáze udržuje ve své režii.
Unikátní index funguje zároveň jako constraint (omezení unikátnosti). Data se
ukládají do řádků (anglicky record nebo row). Jeden sloupec databázové tabulky
(nebo i více) může poskytovat jedinečný identifikátor řádku. Pokud má takový
sloupec unikátní index, mluvíme o primárním klíči. Aby databáze mohla kontrolovat
hodnotu cizího klíče (zda odpovídá primárnímu klíči v cizí tabulce), je třeba tento
vztah deklarovat již při vytváření sloupce.


Je dobré vědět, že každý index zabírá místo na disku a jeho
aktualizace mírně zpomaluje zápis.

Dvě tabulky mezi sebou mohou mít vztah (anglicky relation). Pokud má záznam
v tabulce vazbu na více řádků cizí tabulky, mluvíme o vazbě typu 1:N. Použití
databáze si ukážeme na příkladu evidence hotelů. Zvažme uspořádání, kde jedno
město může mít více hotelů (vazba 1:N), ale jeden hotel může mít vazbu právě na
jedno město (vazba N:1). V relačních databázích se vazba realizuje přidáním
pomocného sloupce, který obsahuje hodnotu primárního klíče (zpravidla) jiné
tabulky. Takovému sloupci se pak říká cizí klíč. Setkat se můžeme také s vazbou typu
M:N. Například, jeden host může mít více rezervací v různých hotelech a jeden hotel
může mít více hostů. V relační databázi se taková vazba řeší vložením pomocné
vazební tabulky, která obsahuje cizí klíče na obě hlavní tabulky. Požadovaný vztah
se tak rozloží na dvě vazby typu N:1.

8.2 Relace a entity
Zmínili jsme dvě databázové tabulky pro hotely a města s vazbou N:1. Protože
s hotely chceme pracovat v prostředí Javy, připravíme si dvě entity, do kterých
můžeme databázové záznamy kopírovat.

Hotel

id: long
name: String
street: String
phone: String
price: BigDecimal
currency: String
stars: short
isActive: boolean

City

id: long
name: String
countryCode: String

city

1*

Obrázek 41. Entity hotelu

Popis položek diagramu:

• Hotel – objekt této třídy bude obsahovat data jednoho řádku tabulky hotel.

140

• City – objekt této třídy bude obsahovat data z jednoho řádku tabulky city.

• id – primární klíč mapovaný na sloupec id.

• name – název hotelu (či města).

• city – tento atribut bude v databázi realizován sloupcem city_id, který
označíme jako cizí klíč do tabulky city.

• isActive – sloupec typu boolean umožňující logicky vyjmout řádek
z vyhledávání bez jeho smazání.

• countryCode – kód země, který by v reálné aplikaci pravděpodobně odkazoval do
samostatného číselníku zemí.

8.3 Jazyk SQL aneb jak mluvit s databází
Požadavky na dotazování a manipulaci dat se popisují jazykem SQL (anglicky
Structured Query Language). Jazyk SQL je standardem, který byl naposledy
aktualizován v roce 2023 pod označením ISO/IEC 9075:2023. V této kapitole si
ukážeme jen základní možnosti jazyka, na další studium lze navázat například zde
[38].


Dodavatelé databází implementují standard, ale často přidávají
vlastní dialekty, které nejsou přenositelné.

Mezi základní operace pro práci s daty patří vložení, čtení, aktualizace a mazání.
Soubor těchto čtyř operací se označuje zkratkou CRUD (z anglických sloves: Create,
Read, Update, Delete). V jazyce SQL se tyto operace realizují příkazy INSERT, SELECT,
UPDATE a DELETE. Abychom však mohli pracovat s daty, musíme mít nejdříve
definovanou databázovou strukturu. Názvy databázových struktur zpravidla
nerozlišují malá a velká písmena, a pokud se názvy skládají z více slov, oddělují se
běžně podtržítkem. SQL rozlišuje velikost písmen pouze u textových hodnot
v uvozovkách (v některých případech). Pro přehlednost budou klíčová slova jazyka
SQL psána (v této knize) velkými písmeny a ostatní názvy (tabulky, sloupce, indexy)
budou psány písmeny malými. Jednořádkové komentáře v kódu se uvádějí
zpravidla dvěma znaky pomlček --.

8.3.1 Tvorba databázové tabulky

Začněme příkazem pro založení tabulky hotelů. Seznam sloupců je uzavřen
v kulatých závorkách a oddělovačem je čárka. Mezery v SQL příkazech mohou
obsahovat i zalomení řádků, což budeme pro přehlednost využívat.
Předpokládejme, že tabulka měst s názvem city již existuje.

141

❶ Protože zde pracujeme přímo s objektem knihovny JDBC, je třeba propagovat (či
zachytávat) kontrolovanou výjimku.

❷ Návratový objekt si připravíme v proměnné result. Do objektu pak postupně
přepíšeme hodnoty z objektu ResultSet, který obsahuje metody pro čtení
různých datových typů. Na sloupec se můžeme odkázat jeho databázovým
názvem (což je přehlednější), nebo pořadovým číslem v SQL dotazu (což vede
k rychlejšímu běhu). Obecně se doporučuje preferovat čitelnost kódu a výkon
optimalizovat až v případě prokázaných problémů.

❸ Metoda se používá pro dva mírně odlišné příkazy SELECT. V jednom je k dispozici
navíc název města. Abychom nemuseli psát a udržovat dvě různé implementace
mapování, tak přiřazení města podmíníme druhým pomocným parametrem
s názvem toho volitelného sloupce. Pokud název databázového sloupce není
definován, zápis se neprovede.

Specifikace JDBC poskytuje také API pro získání dat o struktuře databáze. Říkáme
tomu metadata. Právě takové informace využívá i metoda hasTables().
Zjednodušená implementace kontroluje pouze přítomnost databázové tabulky
hotel. Pokud tabulka chybí, budeme předpokládat, že chybí i druhá tabulka city.
Práce s metadaty však patří mezi pokročilejší techniky, a tak případné zájemce jen
odkážu na dokumentaci JavaDoc. Implementaci najdeme v příkladech.

8.9 Vkládání Java objektů do databáze
Připomeňme, že vkládání dat do databáze provádíme příkazem INSERT a kód
najdeme ve třídách typu DAO. Podívejme se na komentovanou ukázku.

Zdrojový kód 92. Java kód pro vložení hotelu.

public long insert(Hotel entity) {
 String sql = """
 INSERT INTO hotel ❶
 (name, city_id, street, phone, price, stars) VALUES
 (:name, :cityId, :street, :phone, :price, :stars)
 """;
 try (SqlParamBuilder builder = builder()) { ❷
 builder.sql(sql)
 .bind("name", entity.getName()) ❸
 .bind("cityId", entity.getCity().getId())
 .bind("street", entity.getStreet())
 .bind("phone", entity.getPhone())
 .bind("price", entity.getPrice())
 .bind("stars", entity.getStars())
 .executeInsert(); ❹
 return builder.generatedKeys(resultSet -> resultSet.getLong(1))
 .findFirst().get(); ❺
 }
}

153

❶ Příkaz se od nativního SQL liší jen značkami parametrů.

❷ Využití metody pro získání builderu zpřehlední kód a usnadní případnou změnu
sestavení na ostatních místech.

❸ Formu přiřazení hodnot už známe z příkazu SELECT.

❹ Metoda execute() by nám data také korektně vložila. Pokud však potřebujeme
získat hodnotu databázového identifikátoru, je třeba zavolat metodu
executeInsert().

❺ Metoda generatedKeys() pak vrátí seznam přiřazených identifikátorů ve formátu
Stream<ResultSet>. Při vkládání jednoho hotelu můžeme očekávat jeden
identifikátor. Podle dokumentace JDBC ho najdeme na pozici 1. V případě
prázdného Streamu by metoda get() vyhodila výjimku. Pro případ obecného
použití tento kód přesuneme do samostatné metody abstraktního předka.
Takovou metodu využije i třída CityDao.

Ostatní metody obou DAO objektů jsou psány ve stejném duchu, kód najdete
v přiložených příkladech.

8.10 Generická abstraktní třída
Aplikace pro vyhledávání hotelů obsahuje pro každou databázovou tabulku jednu
DAO třídu. Reálná aplikace může pracovat s desítkami takových tabulek, a proto je
vhodné přesunout obecné služby do společného předka. Dalším důvodem je
sjednocení API podobných metod tak, aby měly stejný název i logiku. Příkladem
může být vyhledávání databázového záznamu podle jeho primárního klíče nebo
vkládání nového hotelu do databáze. V takovém případě však budeme potřebovat
v abstraktní třídě pracovat s datovým typem, který zatím ještě neznáme. To je dobrá
příležitost připomenout si generické datové typy, které tento problém elegantně řeší.
Implementaci si vysvětlíme na zjednodušené ukázce abstraktní DAO třídy.

Zdrojový kód 93. Generická abstraktní DAO.

/** Common DAO object
* @param <E> Entity type */
public abstract class AbstractDao<E> { ❶
 public abstract Optional<E> findById(long id); ❷
 public abstract long insert(E entity); ❸
}

❶ Generický typ třídy je reprezentován textem uvedeným za názvem třídy ve
špičatých závorkách. Třída může mít i více generických typů, jejichž názvy se
pak oddělují čárkou. Použitý znak E je odvozený od slova Entita. Význam
generického typu je vhodné zdokumentovat v JavaDoc.

154

