Obsah

Podékovani
1 Pfedmluva ke druhému vydéani
2 Uvodni informace

2.1 Ochranné znamky

2.2 Vylouceni odpovédnosti

2.3 Licence ukazkovych prikladd
2.4 Typografie

2.5 Rlzné

3 Uvod a motivace

3.1 Proc¢ vznikla tato kniha?

3.2 Co budeme pottebovat?

3.3 Proc se ucit programovat?
3.4 Proc se ucit praveé jazyk Java?
3.5 ProC¢ webové aplikace?

3.6 Par slov o jazyku Java

4 7Zakladni pojmy

4.1 Data
4.2 Algoritmus
4.3 Pamét
4.3.1 Ukladéni ¢isel
4.3.2 Ukladéani znak
4.3.3 Ukladani logickych hodnot

4.3.4 Jak pocitac rozumi informacim v paméti

4.4 Proménna

4.5 Primitivni datové typy a pretypovani

4.6 Java vyrazy a prikazy
4.7 Stromova struktura dat
4.8 Model redlného svéta
4.9 Fyzikalni objekt
4.10 Programovy objekt
4.11 Trida objektd
4.11.1 Diagram modelu tfid
4.11.2 Nézev tridy
4.11.3 Atributy
4.11.4 Metody

© © © 0 0 0 J =

NN NN DN DNNDNDNDNDDNDNNDN R B R R Rl Rl Rl Rl Rl)l))
0 000 T O O Ul Ul b DNO O O O© © 0 0 U1 U1l U1 WWN KK OO

4.11.5 Konstruktor
4.11.6 Trida ve zdrojovém kodu

5 0d tfidy k redlnému kédu

5.1 Uziti objektu
5.1.1 Texty v jazyce Java
5.1.2 Vytvoreni instance a uZiti tridy
5.1.3 Autoboxing
5.1.4 Neplatné objekty null
5.1.5 Vztahy mezi tfidami
5.2 Dalsi pozndmky ke tfidam

5.2.1 Viditelnost metod, atributi a trid

5.2.2 Dédicnost

5.2.3 VyjimKky

5.2.4 Balicky

5.2.5 Komentare kodu a JavaDoc

5.2.6 Interface

5.2.7 Generické datové typy

5.2.8 Inline tfidy a lambda vyrazy

5.2.9 Trida typu Record

5.2.10 Knihovny
5.3 Datovy typ pole

5.3.1 Pole vytvorené metodou tridy
5.4 Vybrané tfidy standardni knihovny

5.4.1 Trida String

5.4.2 Rozhrani List

Trida ArrayList
List s typem prvku

5.4.3 Rozhrani Map

5.4.4 Rozhrani Stream

5.4.5 Trida BigDecimal

5.4.6 Shrnuti kapitoly o tfidach

6 Webové technologie a pojmy

6.1 XML - rozsiritelny znackovaci jazyk

6.2 HTML - hypertextovy znackovaci jazyk

6.3 CSS — Kaskadové styly
6.4 URL - Adresa internetové stranky
6.5 JSON - usporny datovy format

29
29
31
31
31
31
33
34
35
38
38
39
42
45
46
48
49
50
51
52
52
33
54
54
55
56
57
57
58
39
61
62
63
65
66
69
70

6.6 Shrnuti
7 Resené priklady
7.1 Instalace
7.1.1 Hardware a operacni systém
7.1.2 Apache Maven
7.1.3 Znakovy terminal
7.1.4 Ziskani priklada
7.1.5 Instalace vyvojového prostiredi
7.1.6 Spousténi prikladd
7.1.7 Co délat pri potizich?
7.1.8 Virtudlni pocitac
7.1.9 Virtualiza¢ni kontejner
7.1.10 Vyvojové editory
7.2 Servlety
7.2.1 Hello, World!
Prvni servlet
Vysledek servletu
7.2.2 Datovy model HTML stranky
Pripojeni knihovny do projektu
7.2.3 Programoveé vyrazy
7.3 Tvorba tabulek
7.3.1 Jednoducha tabulka
Prikaz for
Inkrementace a dekrementace
Reseni tkolu
Alternativni prochazeni pole
Podminény prikaz if-else
Tabulka ndhodnych ¢isel
7.3.2 Pfehled vozidel
7.4 Formulare
7.4.1 Formuldf s jednim vstupnim elementem
7.4.2 Formuldr s vice vstupnimi elementy
Reguldrni vyrazy
Formular osobnich udajt
Ternédrni operdtor
Hodnoceni platnosti textd
7.4.3 Pocitani slov

71
72
73
73
74
75
75
75
76
76
77
78
79
79
80
81
84
84
87
88
90
90
91
92
93
94
95
95
97
99
99
101
102
103
106
107
108

7.5 Zabava
7.5.1 Vlastni rodic servletu
7.5.2 Bodové kresleni
Pomocnad trida Base64Converter
Parsovani textu
Class - trida pro popis trid
Logovani udélosti
Trida Optional
7.5.3 Bindrni podoba textu
Reseni
7.5.4 PiSkvorky s defenzivni strategii hry
Diagram trid
Jak to funguje?
Enumerator
Prikaz switch
Popis trid diagramu a jejich metod
Zpracovani dotazu
7.6 Interaktivni aplikace s AJAX
7.6.1 Co je to AJAX
7.6.2 Testovani reguldrnich vyrazi
7.6.3 Piskvorky s rychlejsi odezvou
7.7 Herni strategie od umeélé inteligence
7.7.1 Jak formulovat poZadavek na herni strategii pro Al
7.7.2 ZavérecCné kroky a autorska prava
7.7.3 Automatizované testy
7.8 Verzovani zdrojového kodu
8 Uvod do databdzi a prace s daty
8.1 Zakladni pojmy relacnich databazi
8.2 Relace a entity
8.3 Jazyk SQL aneb jak mluvit s databazi
8.3.1 Tvorba databdzové tabulky
8.3.2 VloZeni radku
8.3.3 Cteni Fadku
8.3.4 Zména zaznamu
8.3.5 Mazani radku
8.3.6 Databazové transakce
8.4 Programové rozhrani Javy

110
110
111
113
113
114
114
115
115
116
118
119
119
121
123
124
125
126
127
128
131
134
134
135
135
136
139
139
140
141
141
142
143
144
144
145
145

8.4.1 Zakladni rozhrani JDBC
8.4.2 Pokrocilé rozhrani JPA
8.4.3 Jak usnadnit préci s JDBC
8.5 Hledani hotell v jazyce Java
8.6 Diagram trid
8.7 Zivotni cyklus datab4zového spojeni
8.8 Cteni databaze v Java objektech
8.9 Vkladani Java objekt do databaze
8.10 Generickd abstraktni tfida
9 Jak psat dobry kod
Reference a zdroje pro dalsi studium
Rejstrik slov

145
146
147
147
148
149
151
153
154
156
158
161

Kod Vysl. Typ Pozndmka

14.2 + 3 ==6 - 1 true boolean Porovnani vysledkd dvou operaci. Matematické
operatory maji pfednost pfed porovnanim.

15.2 + 3 <=6 -2 false boolean Porovnani dvou ¢iselnych vyrazi.

16. true || false true boolean Logicky soucet se vyznacuje parem svislych znakl
(anglicky pipe).

17. true && false false boolean Logicky soucin se vyznacuje parem znakl

ampersand (anglicky ampersand).
18.! false true boolean Negace logického vyrazu.

Znak podtrzitka v ¢iselném literdlu se pouZziva pro grafické oddéleni, jeho pouZziti
neni povinné. Velikost hodnot primitivnich typl lze porovnavat pomoci operatort:
< (je menSi nez), > (je vétsi nez), <= (mensi ¢i rovno), >= (v€tSi ¢i rovno), == (rovna se),
!= (nerovna se). Vysledkem porovndni je logickd hodnota typu boolean. Zde jsou
uvedeny jen vybrané operatory. Vlastni preference 1ze vynutit kulatymi zavorkami.
Primitivni typy jsou vyhodné pro svou nizkou pamétovou néroc¢nost a primou
podporu operatort. Dalsi priklady najdete v kapitole Programové vyrazy.

4.7 Stromova struktura dat

Data lze seskupovat do struktur, které zrychluji vyhleddvani nebo usnadiuji
manipulaci. Se stromovou strukturou se budeme setkavat casto, proto si
predstavime zdkladni pojmy.

Obrdzek 5. Schéma stromu

24

Pro lepsi predstavu o tomto datovém modelu si vezméme na pomoc strom jabloné

s jejimi listy a plody. Misto, kde se vétve déli, se nazyva uzel (anglicky node). Tento
pojem obecné oznacuje jakékoliv misto, ke kterému se pripojuji dalsi potomci. Na
obrazku jabloné to jsou dalsi vétve, plody ¢i listy stromu.

Koncovy uzel, ktery jiZ nemd zadné potomKky, se nazyva list (anglicky leaf). Kazdy
uzel md pravé jednoho rodice, s vyjimkou prvniho uzlu, kterému fikdme koren
(anglicky root). Uzlim i listim mazZeme priradit ndzvy. Spojnice mezi dvéma uzly se
nazyva hrana. Presnou adresu uzlu zapiSeme jako postupny seznam nazvu od
korene, naptiklad odd€leny teckou.

a.e.f.h.Zluty_list
Podobné bychom mohli lokalizovat i cervené jablko vpravo nahofte.
a.e.i.k.m.jablko

Stromovou strukturu ma také adresa na poStovni obalce (stat -~ mésto — ulice).
Jinym piikladem muze byt hierarchickad klasifikace organismii, dalich prikladd by
se naslo urcité vice.

4.8 Model realného svéta

Vysvétleni pojmu model uvedeme kratkou definici:

Model je zjednoduSend reprezentace urcitého objektu redlného svéta Ci
systému - pojatd z urcitého tihlu pohledu.

— inspirovano zdrojem [10]

Déti si hraji s modely auticek nebo s panenkami, coZ jsou v napodobeniny predméti
redlného svéta. Casto se zachovava tvar ¢i barva, zatimco jiné vlastnosti jsou
potlaceny kvili bezpec¢nosti nebo cené. Pokud se model skldd4 z informaci pro
pocitac¢ové zpracovani, fikdme mu datovy model.

4.9 Fyzikalni objekt

Pii programovani si objekt miiZzeme predstavit jako digitalni model télesa, ktery
napodobuje jeho vlastnosti i chovani. Slovem téleso se oznacuje hmotny pfedmeét,
ktery md své misto (Ci adresu), velikost v prostoru a také €as vzniku i zaniku.

Za teleso 1ze povazovat libovolny konkrétni predmét (napt. dim nebo veverku),

25

VehicleModel Car User
name : String sgrialNumber: inj[owner PersonaINumper sint
trunkVolume : int model licensePlate : String OT firstname : String

made: LocalDate surname : String
birthDate : LocalDate
email : String
<(memufeu:turer
Company EngineType

name : String engine productCode : String

country : Locale <>—— fuelName : String
power : Integer

Obrazek 7. Diagram trid

Podle diagramu pripravime nové tiidy a upravime také tu pivodni metodu pro
vytvoreni objektu jednoho auta. Podivejme se na vysledek...

Zdrojovy kod 10. Komplexni sestavent objektu

public Car createCar() {

Car car = new Car();
car.setMade(LocalDate.of (2010, 10, 22)); @

VehicleModel model = new VehicleModel();
model.setManufacturer(new Company("Toyota", Locale.JAPAN)); @
model.setName("Yaris");

model.setTrunkVolume(436);

car.setModel(model); ©

User user = new User();

user.setPersonalNumber(10);

user.setFirstname("Donald");

user.setSurname("Choresisdi");
user.setBirthDate(LocalDate.of (1990, Month.OCTOBER, 30)); @
car.setOwner(user); ©

return car;

@ Vytvoreni objektu pro datum.

@ Konstruktor se dvéma parametry. Atribut JAPAN je staticky. Objekt 1ze vytvorit
a rovnou pfedat jako parametr bez ukladani do proménné.

© Propojime model s autem.
O Datum lze vytvorit i pomoci konstanty reprezentujici mésic.

© Propojime uzivatele s autem jako vlastnika.

36

Zdrojovy kéd 11. Retézeni metod

public void printCar() {
Car car = this.createCar(); @

LocalDate made = car.getMade(); @

String manufacturer = car.getModel().getManufacturer().getName(); ©
String modelName = car.getModel().getName(); @

Integer trunkVolume = car.getTrunkVolume();

String firstname = car.getOwner().getFirstname();

String surname = car.getOwner().getSurname();

String owner = firstname + " " + surname; @

MyPrinter.print(made, manufacturer,
modelName, trunkVolume, firstname, surname, owner); @
return; @

@ Zavoldme metodu pro vytvoreni auta. this znamend, Ze voldme metodu na
stejném objektu, kde se zrovna nachazime. Slovo this lze v pfi volani metod
zpravidla vynechat.

@® Nacteni data vyroby do proménné made.

© Ukazka fetézeni metod: postupneé se ,prokouseme* az k ndzvu vyrobce.
car.getModel() ndm dd model, na ném zavolame getManufacturer() a nakonec
getName (). Chybny nazev metody odhali kompilator nebo chytry editor.

O Dalsi ukazka fetézeni.
© Spojeni tfi text do jednoho (celé jméno).
@ Predani dat k tisku.

@ Prikaz return ukon¢i metodu. Na konci metody s ndvratovym typem void se ten
prikaz psat nemusi.

VSimneéte si, Ze v diagramu pribyla nova trida popisujici typ energie automobilu
(napriklad benzin, nafta, elektrina z baterie). MiiZe nas také zajimat, jak se zachova
volani metody getName() v pripadé, Ze metoda getManufacturer () neposkytuje Zadny
prirazeny objekt. Volani metod na neexistujicim objektu vyvola chybu pri béhu
programu, kterd predcasné ukonci provadéni metody. Jak uz jsme zminili dfive,
hodnota prazdnych objektti se v kédu popisuje klicovym slovem null, a takové
prazdné objekty jsou vychozi (anglicky default) hodnotou kazdého objektového
atributu Ci pole. Pfesnéji bychom mohli Fici, Ze tento pfipad vede k vyhozeni
vyjimky. Vice informaci o vyjimkdch (anglicky exceptions) se dozvime v kapitole
Vyjimky. Hodnotu null lze také zapisovat do proménnych, posilat do metody, Ci
pouzit pti porovnani instanci. Prikladam nékolik piikladd pouZiti.

37

@ Nejdrive si pripravime c¢islo, jehoz bitova hodnota bude o jedni¢ku vétsi nez
maximalni hodnota ¢isla ¢tyrbitového rozsahu.

@ Operator | (Cesky svislik, kolmitko, roura, anglicky pipe) provadi bitovy soucet
dvou ¢isel, coz znamend, Ze do vysledku promitne logicky soucet bitit na stejné
pozici. Je pravda, Ze nds vysledek bude o jeden znak delsi, ale sprdvnou hodnotu
ziskdme snadno metodou substring(). Pro uplnost uvedme také doplnkovy
operator & pro bitovy soucin, ktery provadi logicky soucin bitil.

Zavérem provedme ve zdrojovém kodu vlastni zmény: rozsah znakové sady
rozsifme o jeden bit tak, aby sada pojala dvojnasobny pocet znakl. Déle pripravme
model na vkladani znakové sady konstruktorem, priCemz do konstruktoru vloZime
kontrolu velikosti znakové sady, kterd bude vyhazovat vyjimku typu
I1legalArgumentException.

7.5.4 Piskvorky s defenzivni strategii hry

Hra PiSkvorky patfi mezi strategické hry, jejichZ kofeny sahaji hluboko do historie.
Existuje nékolik variant, mezi nejznaméjsi patii ztejmeé hra Gomoku s alternativnim
ndzvem 5 in row (v pfekladu 5 v fadé). NaSe pravidla hry budou ndsledujici: hraci
kladou stfidavé barevné kameny do miizky s konec¢nou velikosti, kaZdy hra¢ ma
svoji barvu. Vitézem se stdva hrac, ktery jako prvni postavi nepferusSenou fadu
alesporn péti kament své barvy, povolena je i fada Sikma. Hru je mozné kdykoli
resetovat tlaCitkem a zahdjit hru novou. V nasi implementaci bude protihracem
vzdy pocitac a vyhodu prvniho tahu dostane vZdy ¢lovék.

Obrdzek 36. Ndhled hraci desky

Strategie SW protihrace bude pouze jednoduchd obrana. Cilem hry totiZ neni
vytvorit neporazitelny algoritmus, ale pfedevsim ukazat feSeni vhodné pro dalsi
studium a pozdéji tfeba i pro implementaci vlastnich napadt. Ctenari mohou nad
ramec této knihy vyhledat nékterou knihovnu zamétrenou na hry typu Gomoku

a zkusit napojit jeji algoritmy do stavajici architektury.

118

kdédu docela vyznamné. Tim vSak vyhody enumeratorti nekonci, 1ze je pouzivat
efektivné také v prikazech switch.

Prikaz switch

Prikaz switch umoziiuje vétvit program podle primitivnich celociselnych hodnot
(literalt ¢i konstant). Z objektli jsou podporovany jesté typy String a Enum. Prikladam
zkracenou ukdzku pouziti ze tfidy Boardlodel.

Zdrojovy kod 76. Ukdzka pouZiti prikazu switch

/** Set a stone by an index */

public void setStone(BoardPoint point, StoneEnum stone) {
switch (stone) { @

case BLACK_STONE: @

case WHITE_STONE:
fields.set(convertToBitSetIndex(point, stone)); &
lastMove.set(point);
break; @

default: @

throw new IllegalArgumentException(“Illegal stone" + stone);

@ Prikaz switch vyhodnocuje proménnou, kterd musi byt riizné od null. Télo
prikazu je ohranic¢ené sloZenymi zdvorkami.

@ Jednotlivé pripady se zachytavaji pomoci klicového slova case s konstantou
zakoncenou dvojteckou. Vyctovy typ je jednoznacné urcen v hlavicce prikazu
a pri zachytavani pripadt se uz neuvadi.

© Nasleduje blok prikazil, které se provadéji az do nalezeni klicového slova break.
Zpracovani je shodné pro bily i tmavy kdmen. UloZime pozici kamene do objektu
typu BitSet, metoda convertToBitSetIndex() vSak nejprve spocitd hodnotu
potfebného indexu. Pozici posledniho poloZeného kamene si pak uloZime pro
pozdéjsi grafické zvyraznéni.

O Prikaz pro ukonceni bloku prikazii. V pripadé jeho absence by zpracovani
pokracovalo prichodem néasledujicich ptripada v prikazu switch.

© Hodnoty, které nejsou zachyceny zadnym pripadem case, 1ze zachytit (volitelné)
klicovym slovem default, pfi¢emzZ tento blok nemusi byt nutné na posledni
pozici. Zde se vyhazuje vyjimka, protoZe zadanému bodu md smysl priradit
kamen pouze bilé nebo Cerné barvy.

123

constraint). Pro rychlé vyhledavani miiZe mit jeden ¢i vice sloupci definovany
index, coZ je pomocnd datova struktura, kterou si databdze udrzuje ve své rezii.
Unikdatni index funguje zaroven jako constraint (omezeni unikatnosti). Data se
ukladaji do r'ddkii (anglicky record nebo row). Jeden sloupec databazové tabulky
(nebo i vice) mize poskytovat jedine¢ny identifikator radku. Pokud ma takovy
sloupec unikatni index, mluvime o primdrnim klici. Aby databdze mohla kontrolovat
hodnotu ciziho kli¢e (zda odpovida primdrnimu kli¢i v cizi tabulce), je treba tento
vztah deklarovat jiz pfi vytvareni sloupce.

Je dobré védeét, Ze kazdy index zabird misto na disku a jeho
aktualizace mirné zpomaluje zapis.

Dvé tabulky mezi sebou mohou mit vztah (anglicky relation). Pokud mda zaznam

v tabulce vazbu na vice radk cizi tabulky, mluvime o vazbé typu 1:N. PouZziti
databéze si ukdZeme na prikladu evidence hotelu. Zvazme usporadani, kde jedno
mésto miZe mit vice hotell (vazba 1:N), ale jeden hotel miiZe mit vazbu praveé na
jedno mésto (vazba N:1). V relac¢nich databdazich se vazba realizuje pridanim
pomocného sloupce, ktery obsahuje hodnotu primdrniho klic¢e (zpravidla) jiné
tabulky. Takovému sloupci se pak rika ciz{ kli¢. Setkat se mizeme také s vazbou typu
M:N. Napriklad, jeden host miiZze mit vice rezervaci v riznych hotelech a jeden hotel
muze mit vice hostll. V rela¢ni databdazi se takova vazba fesi vloZenim pomocné
vazebni tabulky, kterd obsahuje cizi kli¢e na obé& hlavni tabulky. PoZzadovany vztah
se tak rozloZzi na dvé vazby typu N:1.

8.2 Relace a entity

Zminili jsme dvé databazové tabulky pro hotely a mésta s vazbou N:1. ProtoZe
s hotely chceme pracovat v prostredi Javy, pripravime si dvé entity, do kterych
muzZeme databazové zaznamy kopirovat.

Hotel City

id: long id: long

name: String name: String

street: String countryCode: String
phone: String
price: BigDecimal .
currency: String o city

stars: short * 1
isActive: boolean

Obrdzek 41. Entity hotelu
Popis polozZek diagramu:

* Hotel — objekt této tridy bude obsahovat data jednoho radku tabulky hotel.

140

o ity — objekt této tridy bude obsahovat data z jednoho radku tabulky city.
o id — primdrni kli¢ mapovany na sloupec id.
* name — ndzev hotelu (¢i mésta).

o city —tento atribut bude v databdzi realizovan sloupcem city_id, ktery
oznacime jako cizi kli¢ do tabulky city.

e isActive —sloupec typu boolean umoznujici logicky vyjmout fadek
z vyhleddvani bez jeho smazéni.

* countryCode —kéd zemé, ktery by v redlné aplikaci pravdépodobné odkazoval do
samostatného ¢iselniku zemi.

8.3 Jazyk SQL aneb jak mluvit s databazi

PoZadavky na dotazovani a manipulaci dat se popisuji jazykem SQL (anglicky
Structured Query Language). Jazyk SQL je standardem, ktery byl naposledy
aktualizovan v roce 2023 pod oznacenim ISO/IEC 9075:2023. V této kapitole si
ukaZeme jen zadkladni mozZnosti jazyka, na dalsi studium lze navazat naptiklad zde
[38].

Dodavatelé databdzi implementuji standard, ale ¢asto pridavaji
vlastni dialekty, které nejsou prenositelné.

Mezi zakladni operace pro praci s daty patii vloZeni, ¢teni, aktualizace a mazani.
Soubor téchto Ctyr operaci se oznacuje zkratkou CRUD (z anglickych sloves: Create,
Read, Update, Delete). V jazyce SQL se tyto operace realizuji prikazy INSERT, SELECT,
UPDATE a DELETE. Abychom vSak mohli pracovat s daty, musime mit nejdiive
definovanou databdzovou strukturu. Nazvy databazovych struktur zpravidla
nerozliSuji mala a velkd pismena, a pokud se nazvy skladaji z vice slov, oddéluji se
bézné podtrzitkem. SQL rozliSuje velikost pismen pouze u textovych hodnot

v uvozovkach (v nékterych pripadech). Pro prehlednost budou klicové slova jazyka
SQL psana (v této knize) velkymi pismeny a ostatni ndzvy (tabulky, sloupce, indexy)
budou psany pismeny malymi. Jednoradkové komentare v kddu se uvadéji
zpravidla dvéma znaky pomlcek --.

8.3.1 Tvorba databazové tabulky

Zacnéme prikazem pro zaloZeni tabulky hotell. Seznam sloupct je uzavien

v kulatych zdvorkach a oddélovacem je Carka. Mezery v SQL prikazech mohou
obsahovat i zalomeni radkd, coz budeme pro prehlednost vyuzivat.
Predpokladejme, Ze tabulka mést s ndzvem city jiZ existuje.

141

@ Protoze zde pracujeme primo s objektem knihovny JDBC, je tieba propagovat (i
zachytavat) kontrolovanou vyjimku.

® Navratovy objekt si pfipravime v proménné result. Do objektu pak postupné
prepiSeme hodnoty z objektu ResultSet, ktery obsahuje metody pro ¢teni
raznych datovych typd. Na sloupec se mizeme odkéazat jeho databdzovym
nazvem (coZ je prehlednéjsi), nebo poradovym ¢islem v SQL dotazu (coZ vede
k rychlejSimu béhu). Obecné se doporucuje preferovat Citelnost kddu a vykon
optimalizovat aZ v ptipadé prokdzanych problémd.

© Metoda se pouziva pro dva mirné odliSné prikazy SELECT. V jednom je k dispozici
navic nazev mésta. Abychom nemuseli psat a udrzovat dvé rlizné implementace
mapovani, tak pfrifrazeni mésta podminime druhym pomocnym parametrem
s ndzvem toho volitelného sloupce. Pokud ndzev databazového sloupce neni
definovan, zapis se neprovede.

Specifikace JDBC poskytuje také API pro ziskdni dat o struktufe databaze. Rikame
tomu metadata. Praveé takové informace vyuZiva i metoda hasTables().
ZjednoduSend implementace kontroluje pouze pritomnost databdzové tabulky
hotel. Pokud tabulka chybi, budeme predpokladat, Ze chybi i druha tabulka city.
Prace s metadaty vSak patfi mezi pokrocilejsi techniky, a tak pfipadné zajemce jen
odkaZu na dokumentaci JavaDoc. Implementaci najdeme v prikladech.

8.9 Vkladani Java objektt do databaze

Pripomenime, Ze vkladani dat do databaze provadime piikazem INSERT a kéd
najdeme ve tfidach typu DAO. Podivejme se na komentovanou ukazku.

Zdrojovy kod 92. Java kod pro vloZeni hotelu.

public long insert(Hotel entity) {
String sql = """
INSERT INTO hotel @
(name, city_id, street, phone, price, stars) VALUES
(:name, :cityId, :street, :phone, :price, :stars)
try (SqlParamBuilder builder = builder()) { @
builder.sql(sql)
.bind("name", entity.getName()) ©
.bind("cityId", entity.getCity().getId())
.bind("street", entity.getStreet())
.bind("phone", entity.getPhone())
.bind("price", entity.getPrice())
.bind("stars", entity.getStars())
.executeInsert(); @
return builder.generatedKeys(resultSet -> resultSet.getLong(1))
.findFirst().get(); @

153

@ Prikaz se od nativniho SQL li$i jen znackami parametrt.

® Vyuziti metody pro ziskani builderu zpiehledni kéd a usnadni pfipadnou zménu
sestaveni na ostatnich mistech.

© Formu prifazeni hodnot uz zndme z piikazu SELECT.

O Metoda execute() by ndm data také korektné vlozila. Pokud vSak potfebujeme
ziskat hodnotu databdzového identifikdtoru, je tfeba zavolat metodu
executelnsert().

© Metoda generatedKeys() pak vrati seznam prirazenych identifikatort ve formatu
Stream<ResultSet>. Pfi vkladani jednoho hotelu miZeme ocekavat jeden
identifikator. Podle dokumentace /DBC ho najdeme na pozici 1. V piipadé
prazdného Streamu by metoda get () vyhodila vyjimku. Pro pripad obecného
pouZiti tento kdd presuneme do samostatné metody abstraktniho predka.
Takovou metodu vyuZije i trida CityDao.

Ostatni metody obou DAO objektl jsou psany ve stejném duchu, kéd najdete
v priloZenych pfikladech.

8.10 Genericka abstraktni trida

Aplikace pro vyhledavani hotelli obsahuje pro kazdou databazovou tabulku jednu
DAO tiidu. Redlnd aplikace mize pracovat s desitkami takovych tabulek, a proto je
vhodné presunout obecné sluzby do spole¢ného predka. Dalsim divodem je
sjednoceni API podobnych metod tak, aby mély stejny nazev i logiku. Pfikladem
muZe byt vyhledavani databdzového zaznamu podle jeho primarniho klice nebo
vkladani nového hotelu do databaze. V takovém pripadé vSak budeme potiebovat

v abstraktni tfidé pracovat s datovym typem, ktery zatim jeSté nezndme. To je dobra
prileZitost pfipomenout si generické datové typy, které tento problém elegantné resi.
Implementaci si vysvétlime na zjednoduSené ukazce abstraktni DAO tfidy.

Zdrojovy kod 93. Generickd abstraktni DAO.

/** Common DAO object

* @param <E> Entity type */

public abstract class AbstractDao<E> { @
public abstract Optional<E> findById(long id); @
public abstract long insert(E entity); ©

@ Genericky typ tridy je reprezentovan textem uvedenym za nazvem tridy ve
$picatych zavorkach. Tfida miZe mit i vice generickych typd, jejichZ nazvy se
pak oddéluji ¢arkou. PouZity znak E je odvozeny od slova Entita. Vyznam
generického typu je vhodné zdokumentovat v JavaDoc.

154

